1,024 research outputs found

    The operator product expansion on the lattice

    Get PDF
    We investigate the Operator Product Expansion (OPE) on the lattice by directly measuring the product (where J is the vector current) and comparing it with the expectation values of bilinear operators. This will determine the Wilson coefficients in the OPE from lattice data, and so give an alternative to the conventional methods of renormalising lattice structure function calculations. It could also give us access to higher twist quantities such as the longitudinal structure function F_L = F_2 - 2 x F_1. We use overlap fermions because of their improved chiral properties, which reduces the number of possible operator mixing coefficients.Comment: 7 pages, 4 postscript figures. Contribution to Lattice 2007, Regensbur

    Quark structure from the lattice Operator Product Expansion

    Get PDF
    We have reported elsewhere in this conference on our continuing project to determine non-perturbative Wilson coefficients on the lattice, as a step towards a completely non-perturbative determination of the nucleon structure. In this talk we discuss how these Wilson coefficients can be used to extract Nachtmann moments of structure functions, using the case of off-shell Landau-gauge quarks as a first simple example. This work is done using overlap fermions, because their improved chiral properties reduce the difficulties due to operator mixing.Comment: 7 pages, 3 figures. Talk given at the XXVII International Symposium on Lattice Field Theory, July 26-31 2009, Peking University, Beijing, Chin

    Gap Domain Wall Fermions

    Full text link
    I demonstrate that the chiral properties of Domain Wall Fermions (DWF) in the large to intermediate lattice spacing regime of QCD, 1 to 2 GeV, are significantly improved by adding to the action two standard Wilson fermions with supercritical mass equal to the negative DWF five dimensional mass. Using quenched DWF simulations I show that the eigenvalue spectrum of the transfer matrix Hamiltonian develops a substantial gap and that the residual mass decreases appreciatively. Furthermore, I confirm that topology changing remains active and that the hadron spectrum of the added Wilson fermions is above the lattice cutoff and therefore is irrelevant. I argue that this result should also hold for dynamical DWF and furthermore that it should improve the chiral properties of related fermion methods.Comment: 12 pages of text, 14 figures, added sect.6 on topology and reference

    Results from 2+1 flavours of SLiNC fermions

    Get PDF
    QCD results are presented for a 2+1 flavour fermion clover action (which we call the SLiNC action). A method of tuning the quark masses to their physical values is discussed. In this method the singlet quark mass is kept fixed, which solves the problem of different renormalisations (for singlet and non-singlet quark masses) occuring for non-chirally invariant lattice fermions. This procedure enables a wide range of quark masses to be probed, including the case with a heavy up-down quark mass and light strange quark mass. Preliminary results show the correct splittings for the baryon (octet and) decuplet spectrum.Comment: 7 pages; talk given at the XXVII International Symposium on Lattice Field Theory, July 26-31 2009, Peking University, Beijing, Chin

    Hadron Spectroscopy with Dynamical Chirally Improved Fermions

    Full text link
    We simulate two dynamical, mass degenerate light quarks on 16^3x32 lattices with a spatial extent of 2.4 fm using the Chirally Improved Dirac operator. The simulation method, the implementation of the action and signals of equilibration are discussed in detail. Based on the eigenvalues of the Dirac operator we discuss some qualitative features of our approach. Results for ground state masses of pseudoscalar and vector mesons as well as for the nucleon and delta baryons are presented.Comment: 26 pages, 17 figures, 10 table

    Nucleon structure in terms of OPE with non-perturbative Wilson coefficients

    Get PDF
    Lattice calculations could boost our understanding of Deep Inelastic Scattering by evaluating moments of the Nucleon Structure Functions. To this end we study the product of electromagnetic currents between quark states. The Operator Product Expansion (OPE) decomposes it into matrix elements of local operators (depending on the quark momenta) and Wilson coefficients (as functions of the larger photon momenta). For consistency with the matrix elements, we evaluate a set of Wilson coefficients non-perturbatively, based on propagators for numerous momentum sources, on a 24^3 x 48 lattice. The use of overlap quarks suppresses unwanted operator mixing and lattice artifacts. Results for the leading Wilson coefficients are extracted by means of Singular Value Decomposition.Comment: 7 pages, 3 figures, contribution to the XXVI International Symposium on Lattice Field Theory, July 14-19 Williamsburg, Virginia, US

    Non-perturbative improvement of stout-smeared three flavour clover fermions

    Get PDF
    We discuss a 3-flavour lattice QCD action with clover improvement in which the fermion matrix has single level stout smearing for the hopping terms together with unsmeared links for the clover term. With the (tree-level) Symanzik improved gluon action this constitutes the Stout Link Non-perturbative Clover or SLiNC action. To cancel O(a) terms the clover term coefficient has to be tuned. We present here results of a non-perturbative determination of this coefficient using the Schroedinger functional and as a by-product a determination of the critical hopping parameter. Comparisons of the results are made with lowest order perturbation theory.Comment: 30 pages, 13 figures, minor changes, published versio

    Low-Dimensional Long-Range Topological Charge Structure in the QCD Vacuum

    Get PDF
    While sign-coherent 4-dimensional structures cannot dominate topological charge fluctuations in the QCD vacuum at all scales due to reflection positivity, it is possible that enhanced coherence exists over extended space-time regions of lower dimension. Using the overlap Dirac operator to calculate topological charge density, we present evidence for such structure in pure-glue SU(3) lattice gauge theory. It is found that a typical equilibrium configuration is dominated by two oppositely-charged sign-coherent connected structures (``sheets'') covering about 80% of space-time. Each sheet is built from elementary 3-d cubes connected through 2-d faces, and approximates a low-dimensional curved manifold (or possibly a fractal structure) embedded in the 4-d space. At the heart of the sheet is a ``skeleton'' formed by about 18% of the most intense space-time points organized into a global long-range structure, involving connected parts spreading over maximal possible distances. We find that the skeleton is locally 1-dimensional and propose that its geometrical properties might be relevant for understanding the possible role of topological charge fluctuations in the physics of chiral symmetry breaking.Comment: 4 pages RevTeX, 4 figures; v2: 6 pages, 5 figures, more explanations provided, figure and references added, published versio

    Quantum Dynamics of a Hydrogen Molecule Confined in a Cylindrical Potential

    Get PDF
    We study the coupled rotation-vibration levels of a hydrogen molecule in a confining potential with cylindrical symmetry. We include the coupling between rotations and translations and show how this interaction is essential to obtain the correct degeneracies of the energy level scheme. We applied our formalism to study the dynamics of H2_{2} molecules inside a "smooth" carbon nanotube as a function of tube radius. The results are obtained both by numerical solution of the (2J+12J+1)-component radial Schrodinger equation and by developing an effective Hamiltonian to describe the splitting of a manifold of states of fixed angular momentum JJ and number of phonons, NN. For nanotube radius smaller than 3.5\approx 3.5 \AA, the confining potential has a parabolic shape and the results can be understood in terms of a simple toy model. For larger radius, the potential has the "Mexican hat" shape and therefore the H2_{2} molecule is off-centered, yielding radial and tangential translational dynamics in addition to rotational dynamics of H2_{2} molecule which we also describe by a simple model. Finally, we make several predictions for the the neutron scattering observation of various transitions between these levels.Comment: 36 pages, 8 figures, submitted to Phys. Rev. B on 12 December 200

    Measurement of the branching ratios of the decays Xi0 --> Sigma+ e- nubar and anti-Xi0 --> anti-Sigma+ e+ nu

    Full text link
    From 56 days of data taking in 2002, the NA48/1 experiment observed 6316 Xi0 --> Sigma+ e- nubar candidates (with the subsequent Sigma+ --> p pi0 decay) and 555 anti-Xi0 --> anti-Sigma+ e+ nu candidates with background contamination of 215+-44 and 136+-8 events, respectively. From these samples, the branching ratios BR(Xi0 --> Sigma+ e- nubar)= (2.51+-0.03stat+-0.09syst)E(-4) and BR(anti-Xi0 --> anti-Sigma+ e+ nu)= (2.55+-0.14stat+-0.10syst)E(-4) were measured allowing the determination of the CKM matrix element |Vus| = 0.209+0.023-0.028. Using the Particle Data Group average for |Vus| obtained in semileptonic kaon decays, we measured the ratio g1/f1 = 1.20+-0.05 of the axial-vector to vector form factors.Comment: 16 pages, 11 figures Submitted to Phys.Lett.
    corecore